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RPCs are Essential in the Datacenter
Remote procedure calls (RPCs) are a common building block for datacenter applications

Scenario: An efficient key-value store in a datacenter

1. Low tail latency is crucial 

2. Thousands of connections per machine 

3. Both the application writer and datacenter operator want the full feature set of TCP

a) Developers want the convenience of                and 

b) Operators want                  and strong

sockets in-order delivery

flexibility policy enforcement



You might want to simply go with Linux…
Linux provides the features we want

But at what cost?

sockets in-order delivery flexibility policy enforcement



You might want to simply go with Linux…
Linux provides the features we want

But at what cost?

A simple KVS model:

sockets in-order delivery flexibility policy enforcement

256B RPC request/response over Linux TCP
250 application cycles per RPC



You might want to simply go with Linux…
Linux provides the features we want

But at what cost?

A simple KVS model:

We’re only doing a small amount of useful computation!

sockets in-order delivery flexibility policy enforcement

App Processing: 3%

8,300 Total CPU Cycles per RPC

256B RPC request/response over Linux TCP
250 application cycles per RPC

Kernel Processing: 97%



Why is Linux slow?
Application and kernel co-location

Executes entire TCP state machine

State in multiple cache lines

System call and cache pollution 
overheads

Complicated data path

Poor cache efficiency, unscalable



Why not kernel-bypass?
NIC interface is optimized, bottlenecks are in OS

Arrakis (OSDI ‘14), mTCP (NSDI ‘14), Stackmap (ATC ‘16) 

Do network processing in userspace

Expose the NIC interface to the application

Hardware I/O virtualization
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Why not kernel-bypass?
NIC interface is optimized, bottlenecks are in OS

Arrakis (OSDI ‘14), mTCP (NSDI ‘14), Stackmap (ATC ‘16) 

Do network processing in userspace

Expose the NIC interface to the application

Hardware I/O virtualization

 Avoid OS overheads, can specialize stack

 Operators have to trust application code

 Little flexibility for operators to change or update network stack
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Interface: one-sided and two-sided operations in NIC hardware

RPCs and sockets implemented on top of basic RDMA primitives
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Why not RDMA?
Remote Direct Memory Access:

Interface: one-sided and two-sided operations in NIC hardware

RPCs and sockets implemented on top of basic RDMA primitives

 Minimize or bypass CPU overhead

 Lose software procotol flexibility

 Bad fit for many-to-many RPCs

 RDMA congestion control (DCQCN) doesn‘t work well at scale



TAS: TCP Acceleration as an OS Service
An open source, drop-in, highly efficient RPC acceleration service

No additional NIC hardware required

Compatible with all applications that already use sockets

Operates as a userspace OS service using dedicated cores for packet processing

Leverages the benefits and flexibility of kernel bypass with better protection

TAS accelerates TCP processing for RPCs while providing all the desired features

Sockets In-order delivery Flexibility Policy enforcement
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How does TAS fix it?
Dedicate cores for network stack

Separate simple fast path and slow path

Minimize and localize connection state

System call and cache pollution 
overheads

Complicated data path

Poor cache efficiency, unscalable



Application

Slow Path

Simple Fast Path

CPU 2 CPU 3

CPU 0

NIC

TAS OverviewApplication

CPU 1



Fast Path
Per packet:
• Generate data segments
• Process & send ACKs
• Flow control
• Apply rate-limit

Slow Path
Per connection:
• Open/close connections
• IP routing, ARP
• Firewalling, traffic shaping
• Compute rate
• Re-transmission timeouts

Application

• Socket API, locking

Linux Kernel TCP Stack

• Open/close connections

Per packet:
• Socket API, locking
• IP routing, ARP
• Firewalling, traffic shaping
• Generate data segments
• Congestion control
• Flow control
• Process & send ACKs
• Re-transmission timeouts

Dividing
Functionality
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Application

• Socket API, locking

Slow Path
Per connection:
• Open/close connections
• IP routing, ARP
• Firewalling, traffic shaping
• Compute rate
• Re-transmission timeouts

Fast Path
Per packet:
• Generate data segments
• Process & send ACKs
• Flow control
• Apply rate-limit Congestion statistics

Retransmissions
Control packets

Data packets 
Payload buffers

Connection setup/teardown

Minimal Connection State

• Seq/Ack numbers
• Remote IP/port
• Send rate or window
• Congestion statistics

Only 2 cache lines per connection
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Application

Slow Path

Fast Path

Minimal Connection State

CPU 2 CPU 3

CPU 0 CPU 1

NIC

Periodically check/update connection state

Many CC algorithms can be implemented
(described in paper)

Congestion Control

per connection

CC Algorithm

Inspired by CCP (SIGCOMM ‘18)
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Evaluation Questions
What is our throughput, latency, and scalability for RPCs?

Do real applications scale with # of cores and have low tail latency?

Do we distribute throughput fairly under network congestion?

(See paper for more in-depth analysis)



Systems for Comparison
We evaluate TAS against 3 other systems:

1. Linux
a) Full kernel, trusted congestion control
b) Sockets interface

2. mTCP (not in this talk, see paper)
a) Pure kernel bypass approach, untrusted congestion control

3. IX
a) Replace Linux with optimized data path, run in privileged mode
b) Uses batching to reduce overhead
c) No sockets interface
d) Requires kernel modifications



Experimental Setup
Intel Xeon Platinum 8160 CPU 24 cores @ 2.10GHz 

196GB of RAM

Intel XL710 40Gb Ethernet Adapter

Benchmarks:

• Single direction RPC benchmark
• RPC echo server
• A scalable key-value store
• Connection throughput fairness under congestion



Linux vs TAS on RPCs (1 App Core)
• Single direction RPC benchmark

• 32 RPCs per connection in flight

• 250 cycle application workload

• 64 bytes realistic small RPC
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Connection Scalability

• 20 core RPC echo server

• 64B requests/responses

• Single RPC per connection
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Key-value Store
Increasing server cores with matching 
load (~2000 connections per core)

IX and TAS provide ~6x speedup over 
Linux across all cores

TAS: 9 app cores, 7 TAS cores

IX, Linux: 16 app/stack cores

TAS has a 15-20% performance 
improvement over IX without sockets

TAS: 8 app cores, 8 TAS cores
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Batching



Fairness Under Incast
We want to see how TAS distributes throughput under congestion

Incast scenario, with four 10G machines all sending to one 40G server

TAS on average maintains fair throughput, while Linux is unstable
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Fairness Under Incast
We want to see how TAS distributes throughput under congestion

Incast scenario, with four 10G machines all sending to one 40G server

TAS on average maintains fair throughput, while Linux is unstable
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Conclusion

Try it yourself!
https://github.com/tcp-acceleration-service

TAS has the convenience and features of Linux, with better performance & stability

Achieved by

1. Separating TCP packet processing into a fast and slow path

2. Minimizing connection state

3. Dedicating cores to the network stack

TAS is a purely software solution that is easy to deploy and operate


