
TAS: TCP Acceleration as
an OS Service
Antoine Kaufmann1, Tim Stamler2, Simon Peter2,

Naveen Kr. Sharma3, Arvind Krishnamurthy3, Thomas Anderson3

MPI-SWS1 The University of Texas at Austin2 University of Washington3

RPCs are Essential in the Datacenter
Remote procedure calls (RPCs) are a common building block for datacenter applications

Scenario: An efficient key-value store in a datacenter

1. Low tail latency is crucial

2. Thousands of connections per machine

3. Both the application writer and datacenter operator want the full feature set of TCP

a) Developers want the convenience of and

b) Operators want and strong

sockets in-order delivery

flexibility policy enforcement

You might want to simply go with Linux…
Linux provides the features we want

But at what cost?

sockets in-order delivery flexibility policy enforcement

You might want to simply go with Linux…
Linux provides the features we want

But at what cost?

A simple KVS model:

sockets in-order delivery flexibility policy enforcement

256B RPC request/response over Linux TCP
250 application cycles per RPC

You might want to simply go with Linux…
Linux provides the features we want

But at what cost?

A simple KVS model:

We’re only doing a small amount of useful computation!

sockets in-order delivery flexibility policy enforcement

App Processing: 3%

8,300 Total CPU Cycles per RPC

256B RPC request/response over Linux TCP
250 application cycles per RPC

Kernel Processing: 97%

Why is Linux slow?
Application and kernel co-location

Executes entire TCP state machine

State in multiple cache lines

System call and cache pollution
overheads

Complicated data path

Poor cache efficiency, unscalable

Why not kernel-bypass?
NIC interface is optimized, bottlenecks are in OS

Arrakis (OSDI ‘14), mTCP (NSDI ‘14), Stackmap (ATC ‘16)

Do network processing in userspace

Expose the NIC interface to the application

Hardware I/O virtualization

Why not kernel-bypass?
NIC interface is optimized, bottlenecks are in OS

Arrakis (OSDI ‘14), mTCP (NSDI ‘14), Stackmap (ATC ‘16)

Do network processing in userspace

Expose the NIC interface to the application

Hardware I/O virtualization

 Avoid OS overheads, can specialize stack

Why not kernel-bypass?
NIC interface is optimized, bottlenecks are in OS

Arrakis (OSDI ‘14), mTCP (NSDI ‘14), Stackmap (ATC ‘16)

Do network processing in userspace

Expose the NIC interface to the application

Hardware I/O virtualization

 Avoid OS overheads, can specialize stack

 Operators have to trust application code

 Little flexibility for operators to change or update network stack

Why not RDMA?
Remote Direct Memory Access:

Interface: one-sided and two-sided operations in NIC hardware

RPCs and sockets implemented on top of basic RDMA primitives

Why not RDMA?
Remote Direct Memory Access:

Interface: one-sided and two-sided operations in NIC hardware

RPCs and sockets implemented on top of basic RDMA primitives

 Minimize or bypass CPU overhead

Why not RDMA?
Remote Direct Memory Access:

Interface: one-sided and two-sided operations in NIC hardware

RPCs and sockets implemented on top of basic RDMA primitives

 Minimize or bypass CPU overhead

 Lose software procotol flexibility

 Bad fit for many-to-many RPCs

 RDMA congestion control (DCQCN) doesn‘t work well at scale

TAS: TCP Acceleration as an OS Service
An open source, drop-in, highly efficient RPC acceleration service

No additional NIC hardware required

Compatible with all applications that already use sockets

Operates as a userspace OS service using dedicated cores for packet processing

Leverages the benefits and flexibility of kernel bypass with better protection

TAS accelerates TCP processing for RPCs while providing all the desired features

Sockets In-order delivery Flexibility Policy enforcement

Why is Linux slow?
Application and kernel co-location

Executes entire TCP state machine

State in multiple cache lines

System call and cache pollution
overheads

Complicated data path

Poor cache efficiency, unscalable

How does TAS fix it?
Dedicate cores for network stack

Separate simple fast path and slow path

Minimize and localize connection state

System call and cache pollution
overheads

Complicated data path

Poor cache efficiency, unscalable

Application

Slow Path

Simple Fast Path

CPU 2 CPU 3

CPU 0

NIC

TAS OverviewApplication

CPU 1

Fast Path
Per packet:
• Generate data segments
• Process & send ACKs
• Flow control
• Apply rate-limit

Slow Path
Per connection:
• Open/close connections
• IP routing, ARP
• Firewalling, traffic shaping
• Compute rate
• Re-transmission timeouts

Application

• Socket API, locking

Linux Kernel TCP Stack

• Open/close connections

Per packet:
• Socket API, locking
• IP routing, ARP
• Firewalling, traffic shaping
• Generate data segments
• Congestion control
• Flow control
• Process & send ACKs
• Re-transmission timeouts

Dividing
Functionality

Application

• Socket API, locking

Slow Path
Per connection:
• Open/close connections
• IP routing, ARP
• Firewalling, traffic shaping
• Compute rate
• Re-transmission timeouts

Fast Path
Per packet:
• Generate data segments
• Process & send ACKs
• Flow control
• Apply rate-limit

Application

• Socket API, locking

Slow Path
Per connection:
• Open/close connections
• IP routing, ARP
• Firewalling, traffic shaping
• Compute rate
• Re-transmission timeouts

Fast Path
Per packet:
• Generate data segments
• Process & send ACKs
• Flow control
• Apply rate-limit Congestion statistics

Retransmissions
Control packets

Data packet payloads

Connection setup/teardown

Application

• Socket API, locking

Slow Path
Per connection:
• Open/close connections
• IP routing, ARP
• Firewalling, traffic shaping
• Compute rate
• Re-transmission timeouts

Fast Path
Per packet:
• Generate data segments
• Process & send ACKs
• Flow control
• Apply rate-limit Congestion statistics

Retransmissions
Control packets

Data packet payloads

Connection setup/teardown

Minimal Connection State

Application

• Socket API, locking

Slow Path
Per connection:
• Open/close connections
• IP routing, ARP
• Firewalling, traffic shaping
• Compute rate
• Re-transmission timeouts

Fast Path
Per packet:
• Generate data segments
• Process & send ACKs
• Flow control
• Apply rate-limit Congestion statistics

Retransmissions
Control packets

Data packets
Payload buffers

Connection setup/teardown

Minimal Connection State

• Seq/Ack numbers
• Remote IP/port
• Send rate or window
• Congestion statistics

Only 2 cache lines per connection

Application

• Socket API, locking

Slow Path
Per connection:
• Open/close connections
• IP routing, ARP
• Firewalling, traffic shaping
• Compute rate
• Re-transmission timeouts

Fast Path
Per packet:
• Generate data segments
• Process & send ACKs
• Flow control
• Apply rate-limit Congestion statistics

Retransmissions
Control packets

Data packets
Payload buffers

Connection setup/teardown

Minimal Connection State

Application

Slow Path

Fast Path

Minimal Connection State

CPU 2 CPU 3

CPU 0 CPU 1

NIC

Periodically check/update connection state

Congestion Control

per connection

CC Algorithm

Inspired by CCP (SIGCOMM ‘18)

Application

Slow Path

Fast Path

Minimal Connection State

CPU 2 CPU 3

CPU 0 CPU 1

NIC

Periodically check/update connection state

Congestion Control

per connection

CC Algorithm

Inspired by CCP (SIGCOMM ‘18)

Application

Slow Path

Fast Path

Minimal Connection State

CPU 2 CPU 3

CPU 0 CPU 1

NIC

Periodically check/update connection state

Congestion Control

per connection

CC Algorithm

Inspired by CCP (SIGCOMM ‘18)

Application

Slow Path

Fast Path

Minimal Connection State

CPU 2 CPU 3

CPU 0 CPU 1

NIC

Periodically check/update connection state

Congestion Control

per connection

CC Algorithm

Inspired by CCP (SIGCOMM ‘18)

Application

Slow Path

Fast Path

Minimal Connection State

CPU 2 CPU 3

CPU 0 CPU 1

NIC

Periodically check/update connection state

Many CC algorithms can be implemented
(described in paper)

Congestion Control

per connection

CC Algorithm

Inspired by CCP (SIGCOMM ‘18)

Application

Slow Path

Fast Path

Minimal Connection State

CPU 4 CPU 5

CPU 2

NIC

Workload
ProportionalityCPU 3

ApplicationApplication

Slow Path

Fast Path

Minimal Connection State

CPU 4 CPU 5

CPU 0 CPU 2

NIC

Monitor CPU usage and add or remove cores

Workload
ProportionalityCPU 1 CPU 3

ApplicationApplication

Slow Path

Fast Path

Minimal Connection State

CPU 4 CPU 5

CPU 0 CPU 2

NIC

Monitor CPU usage and add or remove cores

Workload
ProportionalityCPU 1 CPU 3

ApplicationApplication

Slow Path

Fast Path

Minimal Connection State

CPU 4 CPU 5

CPU 0 CPU 2

NIC

Monitor CPU usage and add or remove cores

Workload
ProportionalityCPU 1 CPU 3

ApplicationApplication

Slow Path

Fast Path

Minimal Connection State

CPU 4 CPU 5

CPU 0 CPU 2

NIC

Monitor CPU usage and add or remove cores

CPU 6 CPU 7

Workload
ProportionalityCPU 1 CPU 3

ApplicationApplication

Slow Path

Fast Path

Minimal Connection State

CPU 4 CPU 5

CPU 0 CPU 2

NIC

Monitor CPU usage and add or remove cores

CPU 6 CPU 7

Workload
ProportionalityCPU 1 CPU 3

ApplicationApplication

Slow Path

Fast Path

Minimal Connection State

CPU 4 CPU 5

CPU 0 CPU 2

NIC

Monitor CPU usage and add or remove cores

Workload
ProportionalityCPU 1 CPU 3

Evaluation

Evaluation Questions
What is our throughput, latency, and scalability for RPCs?

Do real applications scale with # of cores and have low tail latency?

Do we distribute throughput fairly under network congestion?

(See paper for more in-depth analysis)

Systems for Comparison
We evaluate TAS against 3 other systems:

1. Linux
a) Full kernel, trusted congestion control
b) Sockets interface

2. mTCP (not in this talk, see paper)
a) Pure kernel bypass approach, untrusted congestion control

3. IX
a) Replace Linux with optimized data path, run in privileged mode
b) Uses batching to reduce overhead
c) No sockets interface
d) Requires kernel modifications

Experimental Setup
Intel Xeon Platinum 8160 CPU 24 cores @ 2.10GHz

196GB of RAM

Intel XL710 40Gb Ethernet Adapter

Benchmarks:

• Single direction RPC benchmark
• RPC echo server
• A scalable key-value store
• Connection throughput fairness under congestion

Linux vs TAS on RPCs (1 App Core)
• Single direction RPC benchmark

• 32 RPCs per connection in flight

• 250 cycle application workload

• 64 bytes realistic small RPC

0

1

2

10

40

32 64 128 256 512 1024 2048

Th
ro

u
gh

p
u

t
(G

b
p

s)

Message size (B)

RX Pipelined RPC Throughput

Linux TAS

0

1

2

10

40

32 64 128 256 512 1024 2048

Th
ro

u
gh

p
u

t
(G

b
p

s)
Message size (B)

TX Pipelined RPC Throughput

Linux TAS

Linux vs TAS on RPCs (1 App Core)
• Single direction RPC benchmark

• 32 RPCs per connection in flight

• 250 cycle application workload

• 64 bytes realistic small RPC

0

1

2

10

40

32 64 128 256 512 1024 2048

Th
ro

u
gh

p
u

t
(G

b
p

s)

Message size (B)

RX Pipelined RPC Throughput

Linux TAS

0

1

2

10

40

32 64 128 256 512 1024 2048

Th
ro

u
gh

p
u

t
(G

b
p

s)
Message size (B)

TX Pipelined RPC Throughput

Linux TAS

4.66x
12.4x

Linux vs TAS on RPCs (1 App Core)
• Single direction RPC benchmark

• 32 RPCs per connection in flight

• 250 cycle application workload

• 64 bytes realistic small RPC

0

1

2

10

40

32 64 128 256 512 1024 2048

Th
ro

u
gh

p
u

t
(G

b
p

s)

Message size (B)

RX Pipelined RPC Throughput

Linux TAS

0

1

2

10

40

32 64 128 256 512 1024 2048

Th
ro

u
gh

p
u

t
(G

b
p

s)
Message size (B)

TX Pipelined RPC Throughput

Linux TAS

4.66x

4x

12.4x

6x

Connection Scalability

• 20 core RPC echo server

• 64B requests/responses

• Single RPC per connection

0

5

10

15

20

25

1 16 32 48 64 80 96

Th
ro

u
gh

p
u

t
(m

O
p

s)

Thousand connections

TAS IX Linux

20% 2.2x

Key factor: minimized
connection state

0

2

4

6

8

10

12

14

2 4 8 12 16

Th
ro

u
gh

p
u

t
(m

O
p

s)

Server Cores

KVS Throughput

IX Linux TAS

Key-value Store
Increasing server cores with matching
load (~2000 connections per core)

IX and TAS provide ~6x speedup over
Linux across all cores

TAS: 9 app cores, 7 TAS cores

IX, Linux: 16 app/stack cores

0

2

4

6

8

10

12

14

2 4 8 12 16

Th
ro

u
gh

p
u

t
(m

O
p

s)

Server Cores

KVS Throughput

IX Linux TAS

0

2

4

6

8

10

12

14

16

2 4 8 12 16

Th
ro

u
gh

p
u

t
(m

O
p

s)

Server Cores

KVS Throughput

IX

Linux

TAS

TAS LL

Key-value Store
Increasing server cores with matching
load (~2000 connections per core)

IX and TAS provide ~6x speedup over
Linux across all cores

TAS: 9 app cores, 7 TAS cores

IX, Linux: 16 app/stack cores

TAS has a 15-20% performance
improvement over IX without sockets

TAS: 8 app cores, 8 TAS cores

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

C
D

F TAS Serv + TAS Client

Linux Serv + TAS Client

TAS Serv + Linux Client

IX Serv + TAS Client

Key-value Store Latency
KVS latency measure with single application core, 15% server load

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

C
D

F TAS Serv + TAS Client

Linux Serv + TAS Client

TAS Serv + Linux Client

IX Serv + TAS Client

Key-value Store Latency
KVS latency measure with single application core, 15% server load

Server Median: 5.78x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

C
D

F TAS Serv + TAS Client

Linux Serv + TAS Client

TAS Serv + Linux Client

IX Serv + TAS Client

Key-value Store Latency
KVS latency measure with single application core, 15% server load

Client Median: 2.88x

Server Median: 5.78x

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45

C
D

F

Latency (us)

TAS Serv + TAS Client

IX Serv + TAS Client

Tail Latency
IX has 50% higher latency in the 90p case

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45

C
D

F

Latency (us)

TAS Serv + TAS Client

IX Serv + TAS Client

Tail Latency
IX has 50% higher latency in the 90p case

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45

C
D

F

Latency (us)

TAS Serv + TAS Client

IX Serv + TAS Client

Tail Latency
IX has 50% higher latency in the 90p case

Latency is 20us (27%) higher in the 99.99p case

0.999

0.9992

0.9994

0.9996

0.9998

1

15 25 35 45 55 65 75 85 95 105 115 125
C

D
F

Latency (us)

TAS Serv + TAS Client

IX Serv + TAS Client

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45

C
D

F

Latency (us)

TAS Serv + TAS Client

IX Serv + TAS Client

Tail Latency
IX has 50% higher latency in the 90p case

Latency is 20us (27%) higher in the 99.99p case

In addition, IX has a 2.3x higher maximum latency

0.999

0.9992

0.9994

0.9996

0.9998

1

15 25 35 45 55 65 75 85 95 105 115 125
C

D
F

Latency (us)

TAS Serv + TAS Client

IX Serv + TAS Client

TAS Max: 122us

IX Max: 280us

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45

C
D

F

Latency (us)

TAS Serv + TAS Client

IX Serv + TAS Client

Tail Latency
IX has 50% higher latency in the 90p case

Latency is 20us (27%) higher in the 99.99p case

In addition, IX has a 2.3x higher maximum latency

0.999

0.9992

0.9994

0.9996

0.9998

1

15 25 35 45 55 65 75 85 95 105 115 125
C

D
F

Latency (us)

TAS Serv + TAS Client

IX Serv + TAS Client

TAS Max: 122us

IX Max: 280us

Why long IX tail?

Batching

Fairness Under Incast
We want to see how TAS distributes throughput under congestion

Incast scenario, with four 10G machines all sending to one 40G server

TAS on average maintains fair throughput, while Linux is unstable

0.01

0.1

1

50 100 200 300 400 500 600 700 800 900 1000 2000

Th
ro

u
gh

p
u

t
(m

B
/1

0
0

m
s)

Flows

Median Connection Throughput

Linux 50p TAS 50p Fair Share

Fairness Under Incast
We want to see how TAS distributes throughput under congestion

Incast scenario, with four 10G machines all sending to one 40G server

TAS on average maintains fair throughput, while Linux is unstable

0.01

0.1

1

50 100 200 300 400 500 600 700 800 900 1000 2000

Th
ro

u
gh

p
u

t
(m

B
/1

0
0

m
s)

Flows

Median Connection Throughput

Linux 50p TAS 50p Fair Share

0.01

0.1

1

50 100 200 300 400 500 600 700 800 900 1000 2000

Flows

99p Connection Throughput

TAS 99p Fair Share

Fairness Under Incast
We want to see how TAS distributes throughput under congestion

Incast scenario, with four 10G machines all sending to one 40G server

TAS on average maintains fair throughput, while Linux is unstable

0.01

0.1

1

50 100 200 300 400 500 600 700 800 900 1000 2000

Th
ro

u
gh

p
u

t
(m

B
/1

0
0

m
s)

Flows

Median Connection Throughput

Linux 50p TAS 50p Fair Share

0.01

0.1

1

50 100 200 300 400 500 600 700 800 900 1000 2000

Flows

99p Connection Throughput

TAS 99p Fair Share

Linux 99p: All 0’s

Conclusion

Try it yourself!
https://github.com/tcp-acceleration-service

TAS has the convenience and features of Linux, with better performance & stability

Achieved by

1. Separating TCP packet processing into a fast and slow path

2. Minimizing connection state

3. Dedicating cores to the network stack

TAS is a purely software solution that is easy to deploy and operate

